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Abstract—Aiming at a stereocontrolled biomimetic synthesis of isoprostanes a fully stereocontrolled 8,12-free radical cyclization
has been achieved via intermediate 10 by annulating an endocyclic radical to a butenolide acceptor double bond. In this way
ent-12-epi-PGF2a (ent-2) can be prepared. © 2001 Elsevier Science Ltd. All rights reserved.

Isoprostanes are the products of a non-enzymatic oxida-
tion of arachidonic acid (AA) in the mammalian cell
which, in contrast to the cyclooxygenase mediated pro-
cess, results in the formation of prostanoids with a
cis-arrangement of the 8- and 12-sidechain (Scheme 1).1

Characteristic examples are 8- and 12-epi-PGF2a (1 and
2), of which 1 has been isolated and shown to be a
potent renal and pulmonary vasoconstrictor.2 2, how-
ever, has not been found in nature, so far, though it
should also be formed via the above-mentioned free
radical cascade. Isoprostanes are generated in racemic
form, which is consistent with a non enzymatic pathway.

However, for biological evaluation both enantiomers of
the compounds would be desirable. As several syntheses
of ‘natural’ 12-epi-PGF2a (2) have been reported,3 we
decided to prepare the unnatural enantiomer (ent-2) via
a stereocontrolled biomimetic free radical 8,12-cycliza-
tion. There is ample literature precedence for iso-
prostane syntheses via such a process, in particular
from the Rockach group;4 however, in all cases
diastereomeric mixtures were obtained. Some time
ago we studied the free radical annulation of a 12-radi-
cal to a butenolide acceptor. Thus, thiocarbonate 3
furnished the Corey-lactone derivatives 4 and 5 in a 2:1
ratio.5
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Scheme 1.

Scheme 2.
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Figure 1. Transition states for the radical annulations as derived from the crystal structures of the cyclization products 11 and 14.

The annulation to the butenolide exclusively generates
the cis-fused system, however, the 12-radical, as in all
the cases reported so far,4 lacks facial selectivity, due to
rapid rotation around the 11,12-axis. To inhibit such a
rotation the incorporation of the 11,12-bond into a
cyclic template appeared appropriate, following an ear-
lier precedence by RajanBabu.6 Thus, in our synthesis
of ent-2 the known benzylidene acetal (6)7 was trans-
formed into an epimeric mixture of the acetylides 7a/b.
To rectify the configuration of the C-4-carbinol the
mixture was oxidized to the ketone and then reduced
with Alpine-borane8 to give either 7a or 7b with high
diastereocontrol (Scheme 2). Pure alcohol 7a was
hydrogenated and cyclized to the butenolide 8, which
was converted into thiocarbonate 9 and then into free
radical 10.9 Twofold cis-annulation occurred to give the
ent-12-epi-Corey lactone derivative 1110,11 as a single
stereoisomer in high yield. By routine functional group
manipulation 11 was transformed into 12, i.e. the enan-
tiomer of Rockach’s intermediate in his synthesis of 2.3b

Analogously thiocarbonate 13, obtained from 7b, was
converted into 14,10,11 again as a single stereoisomer
(Scheme 2), which may serve as an intermediate in a
synthesis of 11-epi-PGF2a (15).

The transition states of the respective free radical
cyclizations may be rationalized in terms of the crystal
structures of 11 and 14, respectively (Fig. 1). This figure
clearly indicates the stereochemical course of the addi-
tion of an endocyclic cyclohexyl type radical to the
butenolide acceptor double bond. Both the cis-annula-
tion to the six-membered acetal and the cis-annulation
to the butenolide guarantee the stereochemical outcome
of the cyclization. In conclusion we have described a
fully stereocontrolled 8,12-free radical cyclization in the
isoprostane series and demonstrated its utility for the
synthesis of ent-2.
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